Paratope plasticity in diverse modes facilitates molecular mimicry in antibody response.
نویسندگان
چکیده
The immune response against methyl-alpha-D-mannopyranoside mimicking 12-mer peptide (DVFYPYPYASGS) was analyzed at the molecular level towards understanding the equivalence of these otherwise disparate Ags. The Ab 7C4 recognized the immunizing peptide and its mimicking carbohydrate Ag with comparable affinities. Thermodynamic analyses of the binding interactions of both molecules suggested that the mAb 7C4 paratope lacks substantial conformational flexibility, an obvious possibility for facilitating binding to chemically dissimilar Ags. Favorable changes in entropy during binding indicated the importance of hydrophobic interactions in recognition of the mimicking carbohydrate Ag. Indeed, the topology of the Ag-combining site was dominated by a cluster of aromatic residues, contributed primarily by the specificity defining CDR H3. Epitope-mapping analysis demonstrated the critical role of three aromatic residues of the 12-mer in binding to the Ab. Our studies delineate a mechanism by which mimicry is manifested in the absence of either structural similarity of the epitopes or conformational flexibility in the paratope. An alternate mode of recognition of dissimilar yet mimicking Ags by the anti-peptide Ab involves plasticity associated with aromatic/hydrophobic and van der Waals interactions. Thus, antigenic mimicry may be a consequence of paratope-specific modulations rather than being dependent only on the properties of the epitope. Such modulations may have evolved toward minimizing the consequences of antigenic variation by invading pathogens.
منابع مشابه
Structural evaluation of a mimicry-recognizing paratope: plasticity in antigen-antibody interactions manifests in molecular mimicry.
Molecular mimicry manifests antagonistically with respect to the specificity of immune recognition. However, it often occurs because different Ags share surface topologies in terms of shape or chemical nature. It also occurs when a flexible paratope accommodates dissimilar Ags by adjusting structural features according to the antigenic epitopes or differential positioning in the Ag combining si...
متن کاملPlasticity within the antigen-combining site may manifest as molecular mimicry in the humoral immune response.
Structural and physiological facets of carbohydrate-peptide mimicry were addressed by analyzing the Ab response to alpha-d-mannopyranoside. mAbs against alpha-d-mannopyranoside were generated and screened with the carbohydrate-mimicking 12 mer (DVFYPYPYASGS) peptide. Three mAbs, 2D10, 1H11, and 1H7, which were subjected to detailed analysis, exhibit diverse V gene usage, indicating their indepe...
متن کاملSnugDock: Paratope Structural Optimization during Antibody-Antigen Docking Compensates for Errors in Antibody Homology Models
High resolution structures of antibody-antigen complexes are useful for analyzing the binding interface and to make rational choices for antibody engineering. When a crystallographic structure of a complex is unavailable, the structure must be predicted using computational tools. In this work, we illustrate a novel approach, named SnugDock, to predict high-resolution antibody-antigen complex st...
متن کاملVariable region identical immunoglobulins differing in isotype express different paratopes.
The finding that the antibody (Ab) constant (C) region can influence fine specificity suggests that isotype switching contributes to the generation of Ab diversity and idiotype restriction. Despite the centrality of this observation for diverse immunological effects such as vaccine responses, isotype-restricted antibody responses, and the origin of primary and secondary responses, the molecular...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of immunology
دوره 178 12 شماره
صفحات -
تاریخ انتشار 2007